Direkt zum Inhalt

Erwartungswert-Varianz-Prinzip

(weitergeleitet von μ-σ-Prinzip)

GEPRÜFTES WISSEN
Über 200 Experten aus Wissenschaft und Praxis.
Mehr als 25.000 Stichwörter kostenlos Online.
Das Original: Gabler Wirtschaftslexikon

zuletzt besuchte Definitionen...

    Ausführliche Definition

    1. Darstellung: Entscheidungsprinzip bei Risiko, kurz (μ,σ)-Prinzip genannt. Bei Anwendung des (μ,σ)-Prinzips ist die Präferenzfunktion über den Erwartungswert μ und die Varianz (σ²) bzw. Standardabweichung σ des Ergebnisses definiert. Die Präferenzfunktion ist entsprechend zu konkretisieren, d.h. der Entscheider muss spezifizieren, wie μ und σ in die Präferenzfunktion eingehen.

    Für den Erwartungswert, die Varianz und die Standardabweichung des unsicheren Ergebnisses xa einer Alternative Aa gilt:

    MathML (base64):PG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiIG1hdGhzaXplPSIyMCI+Cjxtc3ViPgo8bWk+zrw8L21pPgo8bWk+YTwvbWk+CjwvbXN1Yj4KPG1pPjo8L21pPgo8bW8+PTwvbW8+CjxtaT5FPC9taT4KPG1mZW5jZWQgY2xvc2U9IikiIG9wZW49IigiPgo8bXN1Yj4KPG1vdmVyIGFjY2VudD0idHJ1ZSI+CjxtaT54PC9taT4KPG1vPsucPC9tbz4KPC9tb3Zlcj4KPG1pPmE8L21pPgo8L21zdWI+CjwvbWZlbmNlZD4KPG1vPj08L21vPgo8bXN1Yj4KPG1vPuKIkTwvbW8+CjxtaT54PC9taT4KPC9tc3ViPgo8bWk+dzwvbWk+CjxtZmVuY2VkIGNsb3NlPSIpIiBvcGVuPSIoIj4KPG1zdWI+CjxtaT54PC9taT4KPG1pPmE8L21pPgo8L21zdWI+CjwvbWZlbmNlZD4KPG1vPuKLhTwvbW8+Cjxtc3ViPgo8bWk+eDwvbWk+CjxtaT5hPC9taT4KPC9tc3ViPgo8L21hdGg+Cg==

    MathML (base64):PG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiIG1hdGhzaXplPSIyMCI+Cjxtc3Vic3VwPgo8bWk+z4M8L21pPgo8bWk+YTwvbWk+Cjxtbj4yPC9tbj4KPC9tc3Vic3VwPgo8bWk+OjwvbWk+Cjxtbz49PC9tbz4KPG1pPlY8L21pPgo8bWk+YTwvbWk+CjxtaT5yPC9taT4KPG1mZW5jZWQgY2xvc2U9IikiIG9wZW49IigiPgo8bXN1Yj4KPG1vdmVyIGFjY2VudD0idHJ1ZSI+CjxtaT54PC9taT4KPG1vPsucPC9tbz4KPC9tb3Zlcj4KPG1pPmE8L21pPgo8L21zdWI+CjwvbWZlbmNlZD4KPG1vPj08L21vPgo8bXN1Yj4KPG1vPuKIkTwvbW8+CjxtaT54PC9taT4KPC9tc3ViPgo8bWk+dzwvbWk+CjxtZmVuY2VkIGNsb3NlPSIpIiBvcGVuPSIoIj4KPG1zdWI+CjxtaT54PC9taT4KPG1pPmE8L21pPgo8L21zdWI+CjwvbWZlbmNlZD4KPG1vPuKLhTwvbW8+Cjxtc3VwPgo8bWZlbmNlZCBjbG9zZT0iKSIgb3Blbj0iKCI+Cjxtcm93Pgo8bXN1Yj4KPG1pPng8L21pPgo8bWk+YTwvbWk+CjwvbXN1Yj4KPG1vPi08L21vPgo8bXN1Yj4KPG1pPs68PC9taT4KPG1pPmE8L21pPgo8L21zdWI+CjwvbXJvdz4KPC9tZmVuY2VkPgo8bW4+MjwvbW4+CjwvbXN1cD4KPG1zcGFjZSB3aWR0aD0iMC4yNzhlbSIvPgo8bW8+LDwvbW8+Cjxtc3BhY2Ugd2lkdGg9IjAuMjc4ZW0iLz4KPG1zcGFjZSB3aWR0aD0iMC4yNzhlbSIvPgo8bXN1Yj4KPG1pPs+DPC9taT4KPG1pPmE8L21pPgo8L21zdWI+CjxtaT46PC9taT4KPG1vPj08L21vPgo8bXNxcnQ+Cjxtcm93Pgo8bWk+VjwvbWk+CjxtaT5hPC9taT4KPG1pPnI8L21pPgo8bWZlbmNlZCBjbG9zZT0iKSIgb3Blbj0iKCI+Cjxtc3ViPgo8bW92ZXIgYWNjZW50PSJ0cnVlIj4KPG1pPng8L21pPgo8bW8+y5w8L21vPgo8L21vdmVyPgo8bWk+YTwvbWk+CjwvbXN1Yj4KPC9tZmVuY2VkPgo8L21yb3c+CjwvbXNxcnQ+CjwvbWF0aD4K

    Der Präferenzwert einer Alternative ist durch

    MathML (base64):PG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiIG1hdGhzaXplPSIyMCI+CjxtaT7OpjwvbWk+CjxtZmVuY2VkIGNsb3NlPSIpIiBvcGVuPSIoIj4KPG1zdWI+CjxtaT5BPC9taT4KPG1pPmE8L21pPgo8L21zdWI+CjwvbWZlbmNlZD4KPG1vPj08L21vPgo8bWk+zqY8L21pPgo8bWZlbmNlZCBjbG9zZT0iKSIgb3Blbj0iKCI+Cjxtc3ViPgo8bWk+zrw8L21pPgo8bWk+YTwvbWk+CjwvbXN1Yj4KPG1zdWI+CjxtaT7PgzwvbWk+CjxtaT5hPC9taT4KPC9tc3ViPgo8L21mZW5jZWQ+CjwvbWF0aD4K

    gegeben, und die Entscheidungsregel lautet

    MathML (base64):PG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiIG1hdGhzaXplPSIyMCI+Cjxtcm93Pgo8bXN1Yj4KPG1pPm1heDwvbWk+CjxtaT5hPC9taT4KPC9tc3ViPgo8bXNwYWNlIHdpZHRoPSIwLjI3OGVtIi8+CjwvbXJvdz4KPG1pPs6mPC9taT4KPG1mZW5jZWQgY2xvc2U9IikiIG9wZW49IigiPgo8bXN1Yj4KPG1pPkE8L21pPgo8bWk+YTwvbWk+CjwvbXN1Yj4KPC9tZmVuY2VkPgo8bW8+PTwvbW8+Cjxtcm93Pgo8bXN1Yj4KPG1pPm1heDwvbWk+CjxtaT5hPC9taT4KPC9tc3ViPgo8bXNwYWNlIHdpZHRoPSIwLjI3OGVtIi8+CjwvbXJvdz4KPG1pPs6mPC9taT4KPG1mZW5jZWQgY2xvc2U9IikiIG9wZW49IigiPgo8bXN1Yj4KPG1pPs68PC9taT4KPG1pPmE8L21pPgo8L21zdWI+Cjxtc3ViPgo8bWk+z4M8L21pPgo8bWk+YTwvbWk+CjwvbXN1Yj4KPC9tZmVuY2VkPgo8L21hdGg+Cg==

    2. Anwendung: Das (μ,σ)-Prinzip erlaubt es einem Entscheider auf einfache Weise, das Risiko einer Alternative bei der Bewertung zu berücksichtigen. Ist der Entscheider risikoavers, so geht σ negativ in die Präferenzfunktion ein, ist er risikofreudig, so geht σ positiv in Φ(μ,σ) ein. Nur risikoneutrale Entscheider berücksichtigen σ gar nicht, sondern allein μ. Aufgrund der Abhängigkeit des Präferenzwertes von nur zwei Parametern lassen sich die Präferenzen eines (μ,σ)-Entscheiders anschaulich in Form eines Indifferenzkurvensystems darstellen, vgl. nachstehende Abb.

    Eine Indifferenzkurve ist der geometrische Ort aller Kombinationen aus μ und σ, die der Entscheider als gleichwertig einschätzt, für die also der Präferenzwert Φ(μ,σ) identisch ist. In den Abb. kennzeichnen die Pfeile die Richtung, in denen Indifferenkurven höhere Präferenzniveaus repräsentieren. In Abb. a verlaufen die Indifferenzkurven parallel zur σ-Achse. D.h., dass Veränderungen von σ nicht zu Änderungen des Präferenzwertes führen; der Entscheider ist risikoneutral. In Abb. b steigen die Indifferenzkurven. D.h., dass eine Erhöhung von σ nur dann zum gleichen Präferenzwert führt, wenn auch μ erhöht wird; der Entscheider ist risikoavers. In Abb. c dagegen sinken die Indifferenzkurven. D.h., dass eine Senkung von σ nur dann zum gleichen Präferenzwert führt, wenn μ erhöht wird; der Entscheider muss für die Senkung des Risikos kompensiert werden, ist also risikofreudig.

    3. Beurteilung: Das (μ,σ)-Prinzip ist aufgrund seiner Flexibilität in der Abbildung von Risikopräferenzen ein einfaches und dennoch breit anwendbares Entscheidungsprinzip bei Risiko. Es liegt der Portefeuille-Theorie und damit dem Capital Asset Pricing Model zugrunde (Kapitalmarkttheorie). Gleichwohl ist es nur in Spezialfällen vereinbar mit dem Bernoulli-Prinzip (der Erwartungsnutzentheorie). Hauptproblem des (μ,σ)-Prinzips ist, dass gegen Dominanzkriterien (absolute Dominanz, Zustandsdominanz, stochastische Dominanz) verstößt.

    zuletzt besuchte Definitionen...

      Mindmap Erwartungswert-Varianz-Prinzip Quelle: https://wirtschaftslexikon.gabler.de/definition/erwartungswert-varianz-prinzip-53962 node53962 Erwartungswert-Varianz-Prinzip node53921 Absolute Dominanz node53962->node53921 node40663 Kapitalmarkttheorie node53962->node40663 node30730 Bernoulli-Prinzip node53962->node30730 node34476 Indifferenzkurve node53962->node34476 node53922 Zustandsdominanz node53962->node53922 node46070 Präferenz node46070->node34476 node33535 Dominanzprinzip node53921->node33535 node43717 Portfolio Selection node43717->node40663 node38148 Investitionstheorie node38148->node40663 node35129 Finanzierungstheorie node35129->node40663 node36661 Grenzrate der Substitution node36661->node34476 node30730->node40663 node37886 Nutzenfunktion node30730->node37886 node36899 Haushaltstheorie node45342 Pareto node45342->node34476 node34476->node36899 node53949 HARA-Klasse node53949->node30730 node53954 Sicherheitseffekt node53954->node30730 node42704 Risikonutzen node42704->node30730 node53922->node33535
      Mindmap Erwartungswert-Varianz-Prinzip Quelle: https://wirtschaftslexikon.gabler.de/definition/erwartungswert-varianz-prinzip-53962 node53962 Erwartungswert-Varianz-Prinzip node30730 Bernoulli-Prinzip node53962->node30730 node34476 Indifferenzkurve node53962->node34476 node40663 Kapitalmarkttheorie node53962->node40663 node53921 Absolute Dominanz node53962->node53921 node53922 Zustandsdominanz node53962->node53922

      News SpringerProfessional.de

      • Was Arbeit in Europa kostet

        Für eine Arbeitsstunde zahlt die deutsche Wirtschaft durchschnittlich 34,1 Euro. Doch bei den Arbeitskosten gibt es zwischen den EU-Mitgliedstaaten deutliche Unterschiede: Es geht noch teurer – aber auch viel billiger.

      • "Das Silicon Valley ist nicht über Nacht entstanden"

        Wenn es ein Digitalisierungs-Mekka gibt, in das deutsche Manager pilgern, ist es das Silicon Valley. Was Unternehmen von den US-Vorreitern lernen und ob sie die 180-Grad-Wende schaffen können, beantworten Sven Grote und Rüdiger Goyk im Gespräch.

      • Utility 4.0 – mehr als eine Worthülse?

        Vierpunktnull auf Teufel komm raus. Kein Themengebiet scheint heute ohne das Zahlenkürzel '4.0' auszukommen. Mit Utility 4.0 ist dieses Phänomen nun auch im Energiesektor angekommen. Zu Recht?

      • Das blaue Jobwunder der Digitalisierung

        Immer mehr Studien prognostizieren, dass die digitale Transformation insgesamt keine Arbeitsplätze kostet. Denn es entstehen auch jede Menge neue Jobs. Die erfordern jedoch andere Kompetenzen.

      • Starke Teams lassen Risiken zu

        "Werde eins mit deinem Projekt", proklamierte vor Jahren eine Baumarktkette. Ein kerniger Slogan, der seine Parallele in einer Google-Studie findet: Teammitglieder die risikobereit in ihrer Aufgabe aufgehen, arbeiten effektiver.

      • "Freibeträge in Abfindungsregelungen wieder einführen"

        Seit 1. Januar gilt die Institutsvergütungsverordnung (IVV). Mit ihr wurden in erster Linie die Anforderungen der Leitlinien der Europäischen Bankenaufsichtsbehörde EBA für eine solide Vergütungspolitik in deutsches Recht umgesetzt. Wie sich das auf die Personal- und Abfindungsstrategien bei den Banken auswirkt, erklärt Jurist Christoph Abeln im Interview.

      • So teuer wird der Fachkräftemangel

        Dass der Fachkräftemangel die deutsche Wirtschaft bremst, ist nicht neu. Allerdings war bislang nicht klar, wie sehr fehlendes Personal zu Buche schlägt. Einer Studie zufolge drohen bis zum Jahr 2030 wirtschaftliche Schäden in Milliardenhöhe. 

      • KMU zögern bei tiefgreifender Digitalisierung

        Der digitale Wandel wirkt sich auf die gesamte Wertschöpfungskette aus. Viele kleine und mittelständische Unternehmen haben das nicht vollends erkannt, weshalb sie sich auf die Optimierung einzelner interner Prozesse versteifen.

      Autoren der Definition und Ihre Literaturhinweise/ Weblinks

      Prof. Dr. Robert Gillenkirch
      Universität Osnabrück
      Universitätsprofessor

      Bücher

      Laux, H., Gillenkirch, R., Schenk-Mathes, H.: Entscheidungstheorie
      Wiesbaden, 2012, S. Kapitel 4

      Literaturhinweise SpringerProfessional.de

      Springer Professional - Die Flatrate für Fachzeitschriften und Bücher
      Abschnitt 2 setzt zu Beginn den institutionentheoretischen Referenzrahmen für kapitalmarktorientierte Informationsintermediation mit Nachhaltigkeitsbezug auf. Hierbei wird zunächst die Konkretisierung und Durchsetzung einer Nachhaltigen …
      Nachdem im vorangegangenen Kapitel 4 das Modell zur Darstellung der Cross-Docking- Prozesse, die mathematischen Zusammenhänge sowie die Deklaration von vier Szenarien erläutert wurden, wird nun das Modell mit empirischem Datenmaterial angewendet.
      Im Marketing hat man es in der Regel mit komplexen Zusammenhängen zwischen zahlreichen Variablen zu tun. So sind Aspekte des Konsumentenverhaltens (z. B. Markenwahl, Art von Bedürfnissen) kaum durch nur eine Variable erklärbar und der Erfolg oder …

      Sachgebiete