Zitierfähige Version
Permutation
Geprüftes Wissen
GEPRÜFTES WISSEN
Über 200 Experten aus Wissenschaft und Praxis.
Mehr als 25.000 Stichwörter kostenlos Online.
Das Original: Gabler Wirtschaftslexikon
zuletzt besuchte Definitionen...
Begriff aus der Kombinatorik. Darunter versteht man die verschiedenen Anordnungen von Elementen einer Grundmenge, wobei in jeder Anordnung alle Elemente der Grundmenge berücksichtigt werden müssen.
(1) Sind alle Elemente der Grundmenge verschieden, handelt es sich um Permutationen ohne Wiederholung:
P = n!.
(2) Lassen sich mind. zwei Elemente der Grundmenge nicht voneinander unterscheiden, handelt es sich um Permutationen mit Wiederholung. Hierbei werden die identischen Elemente der Grundmenge in r Teilmengen zusammengefasst und wird die Anzahl der Elemente aus der i-ten Teilmenge mit ni bezeichnet:
wobei: n = Anzahl der Elemente der Grundmenge, r = Teilmengen gleichartiger Elemente.
Vgl. auch Kombinatorik, Kombination, Fakultät.
GEPRÜFTES WISSEN
Über 200 Experten aus Wissenschaft und Praxis.
Mehr als 25.000 Stichwörter kostenlos Online.
Das Original: Gabler Wirtschaftslexikon