Zitierfähige Version
- Revision von substitutionale Produktionsfunktion vom 19.02.2018 - 15:20
- Revision von substitutionale Produktionsfunktion vom 28.06.2017 - 14:06
- Revision von substitutionale Produktionsfunktion vom 20.04.2010 - 09:44
- Revision von substitutionale Produktionsfunktion vom 01.10.2009 - 11:31
- Revision von substitutionale Produktionsfunktion vom 17.09.2009 - 13:44
- Revision von substitutionale Produktionsfunktion vom 05.06.2009 - 13:40
substitutionale Produktionsfunktion
Geprüftes Wissen
GEPRÜFTES WISSEN
Über 200 Experten aus Wissenschaft und Praxis.
Mehr als 25.000 Stichwörter kostenlos Online.
Das Original: Gabler Wirtschaftslexikon
zuletzt besuchte Definitionen...
Begriff der Produktions- und Kostentheorie, Produktionsfunktion mit einem variablen Einsatzverhältnis der Produktionsfaktoren (Faktorintensität). Es werden ein oder mehrere Faktoren konstant gehalten und mindestens zwei Faktoren variiert, um den gleichen Ertrag oder Ertragsveränderungen zu erzielen. Die ökonomisch günstigste Faktorkombination liegt vor, wenn das Verhältnis der Grenzproduktivitäten der Faktoren dem Faktorpreisverhältnis entspricht (Minimalkostenkombination). Die partiellen Faktorproduktivitäten und die Faktorkoeffizienten sind variabel.
1. Mikroökonomische substitutionale Produktionsfunktion (einzelbetriebliche Betrachtungsweise): Die Substitution der Faktoren kann begrenzt (periphere Substitution, begrenzte Substitution) oder vollständig (alternative Substitution, vollständige Substitution) erfolgen. Bei Variation eines Faktors und Konstanz wenigstens eines anderen Faktors kann der Grenzbetrag der Faktorveränderung entsprechend dem Ertragsgesetz ermittelt werden; dieses Gesetz stand in der ältesten Theorie (A.R.J. Turgot (1721-1781), J.H. von Thünen (1783-1850)) im Vordergrund der Betrachtung.
Bei Variation aller Faktoren ergibt sich das Niveaugrenzprodukt, wobei je nach Homogenität der Funktion eine konstante, zunehmende oder abnehmende Niveaugrenzproduktivität vorliegt. Wenn eine Vermehrung aller Faktoren die Ausbringung um λs erhöht, ist die Funktion homogen vom Grade s, s = 1 bedeutet konstante, s < 1 abnehmende, s > 1 zunehmende Niveaugrenzproduktivität.
2. Makroökonomische substitutionale Produktionsfunktionen: Werden für einzelne Industrien und für ganze Volkswirtschaften aufgestellt. Der Output wird als homogenes Produkt definiert, wobei das Problem der Realgüterzusammenfassung durch Verwendung der Wertschöpfung näherungsweise gelöst wird. Die bisher verwendeten makroökonomischen substitutionalen Produktionsfunktionen gehen von peripherer Substitution und, sofern technischer Fortschritt nicht berücksichtigt wird, von linearer Homogenität aus. Die bekanntesten Funktionen sind die Cobb-Douglas-Funktion und die CES-Funktion, die abnehmende Ertragszuwächse (Ertragsgesetz) aufweisen. Technischer Fortschritt kann in diese Produktionsfunktion arbeitssparend, kapitalsparend oder neutral eingebracht werden, was zu unterschiedlichen Wachstumspfaden führt.
GEPRÜFTES WISSEN
Über 200 Experten aus Wissenschaft und Praxis.
Mehr als 25.000 Stichwörter kostenlos Online.
Das Original: Gabler Wirtschaftslexikon