Direkt zum Inhalt

stochastische Unabhängigkeit

Geprüftes Wissen

GEPRÜFTES WISSEN
Über 200 Experten aus Wissenschaft und Praxis.
Mehr als 25.000 Stichwörter kostenlos Online.
Das Original: Gabler Wirtschaftslexikon

zuletzt besuchte Definitionen...

    Ausführliche Definition

    1. Bei zwei Ereignissen A und B liegt stochastische Unabhängigkeit dann vor, wenn die Information, dass Ereignis B eingetreten ist, die Wahrscheinlichkeit des Eintretens von Ereignis A nicht beeinflusst im Sinne von P(A|B) = P(A). Stochastische Unabhängigkeit ist dadurch gekennzeichnet, dass P(A ∩ B) = P(A) · P(B) gilt, die Wahrscheinlichkeit des Eintretens beider Ereignisse also gleich dem Produkt der Einzelwahrscheinlichkeiten ist (Multiplikationssätze der Wahrscheinlichkeit). In diesem Fall gilt auch für die bedingten Wahrscheinlichkeiten P(A|B) = P(A) bzw. P(B|A) = P(B), wobei P(B) ≠ 0 bzw. P(A) ≠ 0 vorausgesetzt werden muss.

    Bei mehr als zwei Ereignissen wird bei der Definition der stochastischen Unabhängigkeit zwischen paarweiser und gemeinsamer stochastischer Unabhängigkeit der beteiligten Ereignisse unterschieden.

    2. Bei einem Zufallsvektor (X,Y) mit zwei Komponenten liegt der Spezialfall stochastische Unabhängigkeit vor, wenn für die gemeinsame Verteilungsfunktion F von X und Y gilt: FX,Y(x, y) = FX(x) · FY(y) . In diesem Fall ist die Wahrscheinlichkeitsfunktion (bzw. Dichtefunktion) des Zufallsvektors (X,Y) ebenfalls als Produkt der Wahrscheinlichkeitsfunktionen (bzw. Dichtefunktionen) von X und Y darstellbar (vgl. diskrete bzw. stetige Zufallsvariablen).

    Für einen Zufallsvektor mit mehr als zwei Komponenten ist die Definition der stochastischen Unabhängigkeit entsprechend zu verallgemeinern.

    GEPRÜFTES WISSEN
    Über 200 Experten aus Wissenschaft und Praxis.
    Mehr als 25.000 Stichwörter kostenlos Online.
    Das Original: Gabler Wirtschaftslexikon

    zuletzt besuchte Definitionen...

      Literaturhinweise SpringerProfessional.de

      Bücher auf springer.com