Direkt zum Inhalt

Verteilungsfunktion

Geprüftes Wissen

GEPRÜFTES WISSEN
Über 200 Experten aus Wissenschaft und Praxis.
Mehr als 25.000 Stichwörter kostenlos Online.
Das Original: Gabler Wirtschaftslexikon

zuletzt besuchte Definitionen...

    Ausführliche Definition im Online-Lexikon

    Funktion F, die jeder reellen Zahl x die Wahrscheinlichkeit F(x) = P(X ≤ x)  dafür zuordnet, dass die Zufallsvariable X einen Wert von höchstens x annimmt. Die Verteilungsfunktion ist eine nichtfallende Funktion, die nur Werte von 0 bis 1 annehmen kann. Bei einer diskreten Zufallsvariablen mit den Ausprägungen x1, x2, ...  kann die Verteilungsfunktion aus der Wahrscheinlichkeitsfunktion f durch Kumulierung, also gemäß

    MathML (base64):PG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiIG1hdGhzaXplPSIyMCI+CjxtaT5GPC9taT4KPG1mZW5jZWQgY2xvc2U9IikiIG9wZW49IigiPgo8bWk+eDwvbWk+CjwvbWZlbmNlZD4KPG1vPj08L21vPgo8bXN1Yj4KPG1vPuKIkTwvbW8+Cjxtcm93Pgo8bXN1Yj4KPG1pPng8L21pPgo8bWk+aTwvbWk+CjwvbXN1Yj4KPG1vPuKJpDwvbW8+CjxtaT54PC9taT4KPC9tcm93Pgo8L21zdWI+CjxtaT5mPC9taT4KPG1mZW5jZWQgY2xvc2U9IikiIG9wZW49IigiPgo8bXN1Yj4KPG1pPng8L21pPgo8bWk+aTwvbWk+CjwvbXN1Yj4KPC9tZmVuY2VkPgo8bW8+LDwvbW8+CjwvbWF0aD4K

    ermittelt werden. Bei einer stetigen Zufallsvariablen wird die Verteilungsfunktion an einer Stelle x durch Integration über die Dichtefunktion ermittelt:

    MathML (base64):PG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiIG1hdGhzaXplPSIyMCI+CjxtaT5GPC9taT4KPG1mZW5jZWQgY2xvc2U9IikiIG9wZW49IigiPgo8bWk+eDwvbWk+CjwvbWZlbmNlZD4KPG1vPj08L21vPgo8bXJvdy8+Cjxtc3Vic3VwPgo8bXJvdy8+Cjxtcm93Pgo8bW8+LTwvbW8+CjxtaT7iiJ48L21pPgo8L21yb3c+CjxtaT54PC9taT4KPC9tc3Vic3VwPgo8bW8+4oirPC9tbz4KPG1pPmY8L21pPgo8bWZlbmNlZCBjbG9zZT0iKSIgb3Blbj0iKCI+CjxtaT56PC9taT4KPC9tZmVuY2VkPgo8bWk+ZDwvbWk+CjxtaT56PC9taT4KPC9tYXRoPgo= 



    Bei empirischen Verteilungen wird die relative Summenfunktion als empirische Verteilungsfunktion bezeichnet.

    GEPRÜFTES WISSEN
    Über 200 Experten aus Wissenschaft und Praxis.
    Mehr als 25.000 Stichwörter kostenlos Online.
    Das Original: Gabler Wirtschaftslexikon

    zuletzt besuchte Definitionen...

      Literaturhinweise SpringerProfessional.de

      Bücher auf springer.com