Direkt zum Inhalt

Kleinste-Quadrate-Regressionsgerade

GEPRÜFTES WISSEN
Über 200 Experten aus Wissenschaft und Praxis.
Mehr als 25.000 Stichwörter kostenlos Online.
Das Original: Gabler Wirtschaftslexikon

zuletzt besuchte Definitionen...

    Ausführliche Definition im Online-Lexikon

    Begriff der Regressionsanalyse. Man erhält die Kleinste-Quadrate-Regressionsgerade y = a + b x, wenn eine Gerade derart aus einem empirischen Befund von n Beobachtungswertepaaren (xi;yi), i = 1, ... , n, gewonnen wird, dass die Summe der quadrierten vertikalen Abweichungen der Punkte (xi;yi) von der Kleinste-Quadrate-Regressionsgerade minimal ist. Die Koeffizienten a und b werden also durch Minimierung von ∑ (yi - a - bxi)2 bez. a und b festgelegt.

    Mit Ihrer Auswahl die Relevanz der Werbung verbessern und dadurch dieses kostenfreie Angebot refinanzieren: Weitere Informationen

    Mindmap "Kleinste-Quadrate-Regressionsgerade"

    Hilfe zu diesem Feature
    Mindmap Kleinste-Quadrate-Regressionsgerade Quelle: https://wirtschaftslexikon.gabler.de/definition/kleinste-quadrate-regressionsgerade-40009 node40009 Kleinste-Quadrate-Regressionsgerade node44865 Regressionsanalyse node40009->node44865 node44336 Stichproben-Regressionsgerade node44336->node40009 node42989 Parameter node44336->node42989 node35039 Grundgesamtheit node44336->node35039 node45751 Schätzwert node44336->node45751 node40268 Marktsegmentierung node40268->node44865 node39843 Marktforschung node39843->node44865 node43498 Prognose node43498->node44865 node45267 Statistik node45267->node44865
    Mindmap Kleinste-Quadrate-Regressionsgerade Quelle: https://wirtschaftslexikon.gabler.de/definition/kleinste-quadrate-regressionsgerade-40009 node40009 Kleinste-Quadrate-Regressionsgerade node44865 Regressionsanalyse node40009->node44865 node44336 Stichproben-Regressionsgerade node44336->node40009

    News SpringerProfessional.de

    Literaturhinweise SpringerProfessional.de

    Bücher auf springer.com

    Sachgebiete