Akaike-Informationskriterium
Übersicht
zuletzt besuchte Definitionen...
Ausführliche Definition im Online-Lexikon
von Akaike (1981) vorgeschlagene Kennzahl zum Vergleich alternativer Spezifikationen von Regressionsmodellen.
Das Akaike-Informationskriterium (engl. Akaike Information Criterion, AIC) wird als AIC = ln(RSS/n) + 2(K+1)/n berechnet, wobei RSS die Residuenquadratesumme (Residuen) des geschätzten Modells, n der Stichprobenumfang und K die Anzahl der erklärenden Variablen im Modell sind. ln symbolisiert den natürlichen Logarithmus. Der Vergleich zweier Modellspezifikationen anhand von AIC erfolgt analog zum eng verwandten Schwarz-Informationskriterium.
Das Akaike-Informationskriterium (engl. Akaike Information Criterion, AIC) wird als AIC = ln(RSS/n) + 2(K+1)/n berechnet, wobei RSS die Residuenquadratesumme (Residuen) des geschätzten Modells, n der Stichprobenumfang und K die Anzahl der erklärenden Variablen im Modell sind. ln symbolisiert den natürlichen Logarithmus. Der Vergleich zweier Modellspezifikationen anhand von AIC erfolgt analog zum eng verwandten Schwarz-Informationskriterium.
Zur Zeit keine Literaturhinweise/ Weblinks der Autoren verfügbar.
Literaturhinweise SpringerProfessional.de
Bücher auf springer.com
Interne Verweise
AR(p)-Prozess Aggregation Autokorrelation Bestimmtheitsmaß Endogenität F-Test für das multiple Regressionsmodell Fixed-Effects-Modell Kleinstquadratemethode, gewöhnliche Paneldaten und Paneldatenmodelle Regressionsmodell Residuen Simulation Stationarität Struktur Trend Variable, endogene Variable, exogene Wald-Test Ökonometrie ökonometrisches Modell
eingehend
Akaike-Informationskriterium
ausgehend
eingehend
Akaike-Informationskriterium
ausgehend