hypergeometrische Verteilung
Übersicht
zuletzt besuchte Definitionen...
spezielle diskrete Wahrscheinlichkeitsverteilung mit der Wahrscheinlichkeitsfunktion
für k mit M + n - N ≤ k ≤ min(n , M), wobei n, M und N-M natürliche Zahlen sind mit N-M ≤ n ≤ N. Die in die Wahrscheinlichkeitsfunktion eingehenden Ausdrücke sind Binomialkoeffizienten. Die hypergeometrische Verteilung erfasst folgenden Sachverhalt: In einer Grundgesamtheit vom Umfang N befinden sich zwei Sorten von Elementen. Die Anzahl der Elemente der ersten Sorte beträgt M, die der zweiten Sorten N - M. Es werden zufällig n Elemente ohne Zurücklegen entnommen (Urnenmodell). Dann gibt h(k|n; N; M) die Wahrscheinlichkeit dafür an, dass genau k Elemente der ersten Sorte in die Ziehung gelangen. Die hypergeometrische Verteilung hat die Parameter n, M und N. Angewendet wird die hypergeometrische Verteilung z.B. bei der sog. Gut-/Schlecht-Prüfung im Rahmen der Qualitätskontrolle durch eine Warenstichprobe. Der Erwartungswert einer hypergeometrisch verteilten Zufallsvariablen ist n · M/ N und die Varianz
(N - n)/(N - 1) ist der sog. Korrekturfaktor. Unter bestimmten Voraussetzungen kann die hypergeometrische Verteilung durch die Binomialverteilung und die Normalverteilung approximiert werden (Approximation).